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Summary

In this paper we have investigated whether colour perception is affected by the

distribution and the spatial organisation of colours in a complex image. In the first

part of our study, we analysed the influence of scene content and of background

types on the colour appearance judgement. To reach this aim we ran visual

assessment experiments based on the magnitude estimation technique and we

investigated various visual phenomena, such as brightness adaptation, chromatic

spatial adaptation, contrast effects due to sizes and coloured backgrounds, display

field sizes and dynamic range in the scene. The examination of numerous visual

assessment results done showed that the influence of the background on colour

appearance is more noticeable for complex images with high frequencies than for

colour images with low frequencies or simple images. Likewise, the influence of the

background on colour appearance is more noticeable for chromatic images with a

large gamut than for less coloured images with a low gamut. In the second part of

our study, we analysed the influence of the local colour saliency on the colour

appearance. We developed a computational model to measure colour contrast. Our

motivation was to define an objective metric consistent with observer valuation.

The proposed model integrates in a single model the influence of average colour

perception and the interactions between local and global spatial structures

according to the visual eccentricity. The measure of colour contrast relies on a set

of parameters organised in a hierarchical structure. The computation is based on

spatial criteria and integrates low-level factors calculated on defined regions

relatively to their local and global neighbourhoods.
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It is well known that colour appearance of a scene depends on the env ironment in

which elements are v iewed and that colour perception is affected by the

distribution and the spatial organisation of colours [1]. During the last decade,

increased knowledge about colour perception has been exploited in computer v ision

to improv e colour management and to dev elop computational models which

correlate with human perception. The fidelity of the correspondence between

algorithmic predictions and human perception is important because it ensures the

v alidity and the relev ancy of objectiv e measures compared with subjectiv e

v aluations [2]. Colour appearance descriptors should play a major function in

computer v ision. It could be helpful to improv e models with application in v isual

search, v ideo compression, image database query ing, and all other image

processing fields where human observ er is directly implied [3–4].

Colour appearance is influenced by sev eral and different factors such as spatial

colour distribution in the observ ed scene or spatial induction from different

coloured surfaces. Surround and background largely influence the colour

appearance of a patch. Prev ious works showed the importance of colour contrast in

the judgement of perceiv ed colours [1–2]. For example, Olzak et al. studied the

centre-surround interactions between coloured areas in fine spatial

discriminations [5]. Other works showed the importance of colour saliency in the

perception of complex images [6]. One major drawback of most existing saliency

models is that either colour information is not integrated in the computation or it

is taken into account only through the raw RGB components of processed images

[7 ]. For example, Van de Weijer et al. proposed a salient point detector based on the

analy sis of the statistics of colour deriv ativ es of RGB components [8]. Another

important drawback of current saliency models is that local spatial organisation of

the v isual scene generally does not play an activ e part in the processing. Howev er,

it is, for instance, well known that a large uniform patch does not attract v isual

attention as a fine textured structure does. Moreov er, colour appearance is widely

dependent on the local spatial arrangements. When a lot of papers deal with the

detection of points of interest, few works study the extraction of Regions of Interest

(ROI). Howev er we can note that ROI detection based on v isual attention

mechanisms is increasingly discussed in the image processing community [9–14].

For example, Hu et al. propose a Visual Attention Region (VAR) process which

inv olv es the selection of features such as intensity , colour, orientation and size as

performed by the primary v isual cortex [15]. The uniqueness of a combination of

such features at a location compared to its neighbourhood indicates a high salient

region. The selection of ROI is directed by both neurological and cognitiv e

resources. Neurological resources refer to bottom-up (stimuli-based) information

when cognitiv e resources refer to top-down (task-dependent) cues [16]:
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Bottom-up information is controlled by low-lev el image features that

stimulate achromatic and chromatic parallel pathway s of the human

v isual sy stem [17].

•

Top-down cues are controlled by high-lev el cognitiv e strategies largely

influenced by memory and task-oriented constraints [18].

•

It is well acknowledged that the v isual field is decomposed into a set of ROI [19]. It

means that v isual attention mechanisms offer an effectiv e approach to analy se

complex scenes with limited transmission bandwidths and processing resources

[20]. According to numerous studies, the future of v isual attention models will

follow the dev elopment of perceptual multiscale saliency map based on a

competitiv e process between all bottom-up cues (colour, intensity , orientation,

location, motion) [21–24]. In order to be consistent with human v isual perception,

colour information must be exploited on the basis of chromatic channel

opponencies. Likewise, in order to be consistent with neural mechanisms, all

features must be quantified in the LMS colour space. During the competitiv e

process colour information must be modulated by local spatial arrangements of the

v isual scene.

One goal of the present work was to explore how complex spatial backgrounds

influence colour appearance, without taking into account the implicit semantics of

the image. We hav e therefore limited our experiments to the study of complex

(natural) images segmented. We hav e not studied the influence of segmentation of

colour appearance, as Wichmann [25] or Canosa [26] did. In general, to estimate

the colour appearance of an ROI, the observ er both focuses his attention on specific

(segmented) areas of the background, and globally v iews the entire image [25]. In

our study , we hav e not inv estigated whether the observ er focuses his attention on

specific (segmented) areas of the background; we hav e only taken into account his

global judgement.

The aim of the first section is to giv e a brief state of the art of colour appearance

models and v isual appearance models in order to show how v isual saliency

parameters interact with colour appearance parameters.

The following section is dev oted to analy se the influence of scene content (colour

patches and spatially -v ary ing images) and of background ty pes (a simple chart

with a few number of colour patches, complex spatial backgrounds and spatially -

v ary ing backgrounds) on the colour appearance judgement. To reach this aim we

ran v isual assessment experiments based on the magnitude estimation technique.

This scaling technique was the key point of LUTCHI dataset experiments [27 ]. The

aim of this study is not to prov ide absolute quantitativ e v alues, in such a case the

colour matching technique would hav e been more accurate, but to ev aluate

perceptual tendencies. For this reason we used the magnitude estimation.
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Moreov er, Luo exposed three adv antages of magnitude estimation [27 ]. It prov ides

absolute perceptual v alues for colour attributes. It giv es results perceptually

equiv alent to those predicted by colour appearance models easily leading to deriv e

a colour model. Finally , it expresses colour in a consciously reportable form. In our

study , we inv estigated v arious v isual phenomena, such as brightness adaptation,

chromatic spatial adaptation, contrast effects due to sizes and coloured

backgrounds, display field sizes and dy namic range in the scene. A prev ious work

was done by Webster [1], in which the motiv ation was to examine changes in

colour perception resulting from adaptation or induction to colour contrast in

spatially v ary ing backgrounds. Our motiv ation was quite different; our aim was to

examine background influences on colour appearance to define new specific

v iewing parameters consistent with colour perception. Another work was also done

by Fairchild [28], in which the motiv ation was to propose an image appearance

model referred to as iCAM. The iCAM model has a sound theoretical background;

howev er, it is based on empirical modelling of v iewing parameters relativ e to the

image content, background and surround rather than a standardised colour

appearance model such as the last referent CIE colour appearance model: the

CIECAM02 [29]. Moreov er, filters implemented are only spatial and cannot

contribute to colour rendering improv ements for mesopic conditions with high

contrast ratios and for a large v iewing field.

The third section is dev oted to introduce a computational model dev eloped to

measure colour contrast. The idea is to define an objectiv e metric consistent with

observ er v aluation in order to test the influence of the local colour saliency on the

colour appearance. The proposed approach integrates in a single model the

influence of av erage colour perception and the interactions between local and

global spatial structures according to the v isual eccentricity . The measure of

colour contrast relies on a set of parameters organised in a hierarchical structure.

The computation is based on spatial criteria and integrates low-lev el factors

calculated on defined regions relativ ely to their local and global neighbourhoods.

Colour Appearance Models

The first colour appearance model (CAM) recommended by the CIE in 1 997 was

CIECAM97 s [30–32]. Next, in 2004, this model was superseded by the CIECAM02

in order to ov ercome sev eral shortcomings [33–35]. CIECAM02 predicts

satisfactory , within some limits, a wide range of perceptual factors contributing to

colour image difference perception. Nev ertheless, it insufficiently took into account

some v ery important perceptual factors linked to: v iewing conditions (surround

and background, luminance range, luminance adaptation, chromatic adaptation);
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spatial effects (sample size, size of stimulus, contrast, spatial adaptation); and

mesopic v ision (rod contribution).

The main perceptual factor which influences colour appearance estimation is

related to viewing conditions. In CIECAM02, v iewing conditions are defined by the

illumination (light source and luminance lev el) and by the luminance factors of

background and surround (av erage, dim or dark). These parameters are v ery

difficult to define, so they lead to confusion and dev iations in experimentation.

Recent work had been carried out to better predict changes in colour appearance

with different v iewing parameters [36–37 ]. The second perceptual factor which

has a profound impact on the colour appearance is linked to the luminance range of

the image observ ed (white-to-dark, e.g. from highlight to shadow) and more

generally to the background surrounding the objects in the image. Such a

hy pothesis has been already reported by Hubel [38] and Corriea [39] with regard

to the problem of assessing image quality using segmented contents. Likewise,

Webster prov ed that colour perception changes in spatially -v ary ing backgrounds

[1]. To examine the effect of adaptation and induction to colour contrast, Webster

used a hue-scaling task. The third perceptual factor which has a profound impact

on the colour appearance of an image is linked to the state of visual adaptation of the

observ er. Most models of colour appearance assume photopic v ision, and

completely disregard the contribution from rods at low lev els of luminance. The

only colour appearance model which includes a rod contribution was the Hunt

1 994 model [40]. Likewise, Kwak [37, 41] had inv estigated the problem of colour

appearance under mesopic v ision conditions using magnitude estimation

technique.

The idea of this paper is not to improv e the CIECAM02 model by incorporating

perceptual factors such as those cited abov e but to compute the influence of these

factors on colour differences perception. A complete model should predict v arious

well-known v isual phenomena such as the Stev ens effect, Hunt effect, Bezold-

Brücke effect, simultaneous contrast, crispening, colour constancy , colour

memory , discounting-the-illuminant, light, dark and chromatic adaptation,

surround effect, spatial and temporal v isions. All these phenomena are caused by

the change of v iewing parameters, primarily illuminance lev el, field size,

background, surround, v iewing distance, spatial and temporal v ariations, v iewing

mode (illuminant, surface, reflecting, self-luminous or transparent), structure

effect, shadow, transparency , neon-effect, saccades effect, stereo depth, etc (Figure

1). We hav e limited our scope to the viewing conditions, the luminance range and the

visual appearance, because their influence is strong when an observ er sees a digital

image, particularly when an observ er sees an image under mesopic v iewing

conditions.
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Ov er the last decade different computational models of attention hav e been

introduced to prov ide a saliency map which codes the local v isual attractors ov er

the entire scene [26, 42–43]. We can suppose that v isual attractors influence the

colour appearance of an image and more specifically the colour saliency which

codes the local regions where colour features such as hue, contrast, and opponency

would guide the attention of a human observ er during a v isual search task ov er

the entire v isual scene [16, 44].

Sano has shown that the perception of colour difference is image dependent [45].

This image dependence is especially noticeable in lightness direction. Sano’s

experiments showed that lightness differences were less noticeable than chroma

and hue differences and confirmed that the background (i.e. the colour of pixels)

influence is more significant on colour difference ev aluation for complex (natural)

images than for colour patches. Furthermore, Wichmann demonstrated that

colour, contrast, saliency and image segmentation influence recognition’s memory

[25]. Wichmann’s experiments confirmed that the colour is a highly salient v isual

attribute which increases subject’s attention.

When dealing with the perception of colour images, v isual contrast sensitiv ity

play s an important role in the filtering of v isual information processed

simultaneously in the v arious v isual “channels”. The high frequency activ e

channel (also known as parv o-cellular or P channel) enable detail perception; the

medium frequency activ e channel allow shape recognition, whereas the low-

frequency activ e channel (also known as magno-cellular or M channel) are more

sensitiv e to motion.

Spatial contrast sensitiv ity functions (CSF) are generally used to quantify these

responses and are div ided into two ty pes: achromatic and chromatic. Achromatic

contrast sensitiv ity is generally higher than chromatic. For achromatic

sensitiv ity , the maximum sensitiv ity to luminance for spatial frequencies is

approximately 5 cy cles/degree. The maximum chrominance sensitiv ity is only

about one tenth of the maximum luminance sensitiv ity . The chrominance

sensitiv ities fall off abov e 1 cy cle/degree, particularly for the blue-y ellow opponent

channel, thus requiring a much lower spatial bandwidth than luminance. To

further complicate matters, the spatial and temporal CSFs are not separable and so

must be inv estigated and reported as a function on the time-space frequency plane.

For example, although fov eal acuity is far better than peripheral acuity , many

studies hav e shown that the near periphery resembles fov eal v ision for mov ing

and flickering gratings. It is especially true for sensitiv ity to small v ertical

displacements, and detection of coherent mov ement in peripherally v iewed

random-dot patterns. Central fov ea and peripheral v ision are qualitativ ely similar

in spatial-temporal v isual performance and this phenomenon has to be taken into



account for colour appearance modelling. Other perceptual phenomena due to

spatial and temporal effects hav e been reported by numerous papers [28, 46–49].

Sev eral studies hav e shown that the Human Visual Sy stem is more sensitiv e to:

low frequencies than to high frequencies•

noise in dark and bright regions than in other regions•

distortions in regions of high activ ity (e.g. salient regions)•

distortions near edges (objects contours) than in highly textured areas [50].•

All these spatial effects are unfortunately not taken into account enough by

CIECAM97 s or CIECAM02 colour appearance models. Ev en if numerous papers

hav e been published on this topic, in particular in the proceedings of the CIE

Expert Sy mposium on Visual Appearance organised in 2006 [21, 51–53], there is

a need for further research on spatial effects.

The main limitation of colour imaging in the colour appearance models prev iously

described is that they can only predict the appearance of a single stimulus under

“reference conditions” such as a uniform background. These models can been used

successfully in colour imaging as they are able to compute the influence of v iewing

conditions such as the surround lighting or the ov erall v iewing luminance on the

appearance of a single colour patch. The problem with these models is that the

interactions between indiv idual pixels are mostly ignored. To deal with this

problem, spatial appearance models hav e been dev eloped such as the iCAM [48,

54] which take into account both spatial and colour properties of the stimuli and

v iewing conditions. The goal in dev eloping the iCAM was to create a single model

applicable to image appearance, image rendering, and image quality specifications

and ev aluations. This model was built upon prev ious research in uniform colour

spaces, the importance of image surround, algorithms for image difference and

image quality measurement [28], insights into observ ers ey e mov ements while

performing v arious v isual imaging tasks [55], adaptation to natural scenes [57 ]

and an earlier model of spatial and colour v ision applied to colour appearance

problems and high dy namic range (HDR) imaging [57 ].

The iCAM model has a sound theoretical background, howev er, it is based on

empirical equations rather than a standardised colour appearance model such as

CIECAM02 and some parts are still not fully implemented. It is quite efficient in

dealing with still images but it needs to be improv ed and extended for v ideo

appearance [54]. Moreov er filters implemented are only spatial and cannot

contribute to colour rendering improv ement for mesopic conditions with high

contrast ratios and a large v iewing field. Consequently , the concept and the need

for image appearance modelling are still under discussion in the Div ision 1 of the

CIE, in particular in the TC 1 -60 ‘Contrast Sensitiv ity Function (CSF) for Detection



and Discrimination’. Likewise, how to define and predict the appearance of a

complex image is still an open question.

Visual Assessment Experiments

Viewing conditions

In this study , we considered the case for which the observ er saw projected images

on a screen in a darkened room. The av erage luminance of the screen (i.e. the

surround) was less than 1 0 cd/m
2
, consequently the human v isual sy stem

operated in the mesopic range rather than in the ty pical photopic range [33].

Observ ers watched the images projected on a white screen with a distance about

27 0 cm (Figure 2).

The projector used for the study was calibrated daily before each session of

psy chov isual experiments and a MURATest (colour wheel v ideo-colorimeter) was

used to control the non-uniformity of the projection. The dev ice used in this study

(dev eloped by the ELDIM company ) has a CCD of resolution 1 536×1 024 and a 1 6

bit A/D conv erter. Furthermore, prev ious experiments done in our laboratory had

shown that it has a homogeneous accuracy on whole CCD array . All test patches

and reference patches projected on the screen were measured. All these measures

were used to compare colour attributes assessed by observ ers to colour data

display ed. All background patches were also measured to control and calibrate the

v ideo-projector. The v iewing angle for each image was about 24°, which

corresponds to a perifov eal v ision. The size of images was 90 cm by 1 1 5 cm. The

images were partitioned in hexagonal cells of constant size. For most of experiments

the v iewing angle for each patch (cell) was about 1 .5°, which corresponds to a

fov eal v ision (Figure 3).

The reference white was alway s set to the white patch of the image display ed on

the screen for most of the tests or measurable onto the white screen (outside the

background) for tests inv olv ing complex images. The luminance of the reference

white point was set to 200 cd/m 2. The luminance of the dark wall surrounding the

white screen was set to 1 cd/m
2
. The luminance of the background of images (black

patches) was approximately equal to 0.8 cd/m 2.

Im age data sets

Two different sets of test images were used: one with a simple background, another

one with a complex background. For the first set, two reference stimuli and a

reference grey scale were presented to allow a better relativ e estimation. The test

patch and the two reference patches were centred in the image following



specifications of the v iewing pattern used for the LUTCHI data set [27 ] (Figure 4).

In order to be consistent with prev ious experiments done with the LUTCHI data set,

we used the L*a*b* colour space for our v isual assessment experiments.

The second set of test images almost entirely cov ered the background. No reference

patch was presented in this case. For all experiments, assessments were realised

with magnitude estimation technique. In this test set (shown in Figure 5), the

first image (houses) corresponds to a colour image with few colours (the av erage

v alue of a* and of b* is equal to 0), a small gamut and high spatial frequencies. The

second image (girl’s face) corresponds to a more coloured image with a large gamut

and low spatial frequencies. Lastly , the third image (motorcy clists) corresponds to

a colour image with a larger gamut and high spatial frequencies. The first image

was chosen because the conv ex hull of its colour gamut approximately ov erlaps the

colour gamut of background patches used for the first set of images with simple

background. On the other hand, the colour gamut of the two others is more

extended.

Background patches were computed to sample the colour gamut. For each test, all

patches were hexagonal in shape. For each test stimulus, reference stimuli and

background stimuli had the same size. Whatev er the test, four reference patches (a

red, a green, a y ellow and a blue one) were used (Figure 6) and ten test patches

were computed for each reference patch. The colour of these patches was deriv ed

from reference patches (Figure 7 ). The test patches were chosen to cov er a large

colour gamut and luminance range.

Visual assessm ent technique

Before the experiment started, observ ers were asked to adapt to the surround field

and to look to a grey image for a period of fiv e min. The first time observ ers

participated in the experiment, a training session was conducted in order that

observ ers did not introduce bias in the results. After being adapted, observ ers were

asked to estimate the lightness, colourfulness and hue of the test patch display ed

(e.g. Figure 8).

For the first set of experiments:

The lightness attribute was estimated relativ ely to a reference grey scale.

Ten lightness patches were presented from black (L = 0) to white (L = 1 00)

on the bottom of the background. For each run the slider of the lightness

scale was set to the lightness v alue of the reference patch. The same

reference white patch was also presented right under the test patch.

•

The colourfulness attribute was estimated relativ ely to a colourfulness

scale. Two reference v alues had been used to shorten the colourfulness scale;

•



the v alue 0 (achromatic colour) and the v alue 1 00 (in our experiments

colourfulness of colour patches was alway s under 1 00). These reference

v alues were used in order to reduce v ariations between observ ers and to

adjust all colourfulness v isual results onto the same v isual scale. For each

run the slider of the colourfulness scale was set to the colourfulness v alue of

the reference patch.

The hue attribute was estimated relativ ely to two hue scales; a Red/Green

scale and a Blue/Yellow scale (respectiv ely a* and b* axes of the L*a*b*

colour space). For each run the two sliders of the hue scales were set to the

hue v alues of the reference patch.

•

For the second set of experiments, there is no reference patch, so the observ er was

asked to estimate the difference of hue, lightness and colourfulness between the test

patch and the colour of the background. Neither reference stimulus nor grey scale

was used for this second set. For each run the cursor was set to the lightness, hue

and colourfulness v alues of the mean lightness, mean hue and mean colourfulness

v alues of the background, respectiv ely .

For the first set of test images, we hav e considered fiv e sub-sets of tests (e.g. Figure

9):

Sub-test 1 : study of the influence of the lightness of background patches;•

Sub-test 2: study of the influence of the colourfulness of background patches;•

Sub-test 3: study of the influence of the hue of background patches;•

Sub-test 4: study of the influence of the size of background patches;•

Sub-test 5: study of the influence of the distance between the background

patches and the central ones.

•

For the second set of test images, we hav e considered three sub-sets of tests:

Sub-test 1 : study of the influence of the size of background patches (e.g.

Figure 10);

•

Sub-test 2: study of the influence of the colourfulness of background patches;•

Sub-test 3: study of the influence of the spatial frequencies of background

patches (see Figure 5)

•

Results of v isual assessm ent experim ents

Ten observ ers participated in these experiments. They were students or

researchers in computer v ision and image understanding (male and female, aged

between 1 8 and 45). All had a normal colour v ision according to Ishihara test. Half

of them had had experiences in attending psy chophy sical experiments. In total,

800 judgements per observ er were made. The whole assessment was div ided into

sev en sessions (three experiments per session) each lasting approximately 40 min



to av oid observ er fatigue.

Results reported in this study are plotted thanks to Quantile-Quantile plot

strategy . Figures 1 1 –1 4 are giv en to illustrate the most significant results of our

study . The v alues entitled ‘measured L*, Cab* or hab’ correspond respectiv ely to the

lightness, chroma or hue v alues measured by the MURATest. The v alues entitled

‘perceiv ed L*, Cab* or hab’ correspond, respectiv ely , to the lightness, chroma or hue

v alues assessed by users thanks to magnitude estimation.

Figure 11 shows two examples of hue assessment done by all observ ers. These

examples show how colour appearance v aries as a function of background in

regards to the hue dimension. The conspicuous bend away from the diagonal

results from the well established observ ation that stimulus v ariations along the

hue dimension do not correspond to pure red–green and blue–y ellow sensations [1].

As we can see on Figure 1 1 , whatev er the test considered, the hue is either ov er

estimated for y ellow colours (around 1 04°) or for green colours (around 1 45°), or

under-estimated for blue colours (around 27 5°) or red colours (around 20°).

Whatev er the ty pe of background considered, it appears that background strongly

biases the perceiv ed hue of the stimuli, for some tests by more than 40 degrees.

Lastly , we hav e noted that the undulations in the curv es are similar whatev er the

test but their amplitude is quite different. These curv es demonstrate that the bias

in perceiv ed hue is quantitativ ely different from one ty pe of background to

another one.

Figure 12 shows two examples of the hue assessment when the hue of background

patches is constraint to a giv en gamut of colours. According to the colour of the test

patches and the colour gamut of the background, the hue is either under estimated

or ov erestimated. The biases are either more pronounced or in the opposite

direction when the hue of background patches is in the opposite direction of test

patch.

In order to estimate the bias on each colour dimension due to each ty pe of

background we first analy sed separately lightness, hue and chroma. Next, we

analy sed these colour dimensions together and adjusted our data according to a

simple linear model (see Figures 1 3 and 1 4). Moreov er, we hav e computed the

correlation coefficient of each adjustment to check its reliability . In general, the

image dependence was especially noticeable in hue direction (see shape coefficients

of Figures 1 3 and 1 4). That is the reason why the results linked to lightness

direction or chroma direction are not presented in this paper.

The hue v ersus lightness difference is shown in Figure 13 and the hue v ersus

chroma difference in Figure 14. Shape coefficients of the fitting curv e show that

spatial background produced large and selectiv e shifts on colour appearance. In



Figure 1 4, we can observ e that the shifts on hue dimension are higher with a

complex image (see Figure 1 4c) than with a simple background (see Figure 1 4a),

meanwhile the shifts on lightness dimension are lower (see Figure 1 3). Moreov er,

the shifts in hue dimension are higher for more coloured images than for the low

coloured image confirming the influence of the number of colour patches in the

background and in their hue. Furthermore, whatev er the colour dimension

considered, the shape coefficients demonstrated that the shifts are higher with a

complex image than with a simple background. As an example, we can compare

shape coefficients of Figures 1 3a/1 3b, of Figures 1 3a/1 3c, of Figures 1 4a/1 4b, and

of Figures 1 4a/1 4c.

Let us now focus on the second set of test images (i.e. images with a complex

background). We can observ e that the shape coefficients of the low coloured image

(Test 1 5) and of the more coloured images (Tests 1 6 and 1 7 ) are noticeably

different when looking for both hue and chroma dimensions (see Figure 1 4c). We

hav e shown that these differences are less noticeable for the high frequencies

images (Tests 1 8 to 20) and for the images with lower frequencies (Tests 1 5 to 1 7 )

when the ‘segmentation’ is coarser (i.e. for resolution 3, Test 20 and Test 1 7 ) than

when the ‘segmentation’ is finer (e.g. for resolution 1 , Test 1 8 and Test 1 5), as we

can see on Figures 1 4d/1 4c. In such a case, high spatial frequencies are filtered by

the ‘segmentation’ and adjustment coefficients that lean toward those of images

compound of background patches (Figure 1 4a).

We hav e noticed that, whatev er the test considered, the shape coefficients showing

lightness shifts induced higher colourfulness shifts. For example, on Figure 1 3 we

can see that lightness shifts (between perceiv ed and measured v alues) are

sy stematically lower than hue shifts (between perceiv ed and measured v alues).

This is confirmed by shape coefficients which all are lower than 1 .

By and large, our results hav e confirmed that chroma shifts are less noticeable

than lightness and hue shifts. Likewise, lightness shifts are less noticeable than hue

shifts. These observ ations concur with other studies [45]. All our results show that

the v isual judgment is less accurate when the colour difference between the test

patch and the reference patch is high (e.g. see Figure 1 3a: under a difference of hue

of 40 the correlation between lightness difference and hue difference is correct, but

abov e 40 the correspondence is bad). Lastly , our results show that the more

complex the content of a scene is the more the observ er’s judgement is biased by

the colour of the background. This confirms Webster’s hy pothesis in relation to

‘colour perception in different env ironments may be sy stematically biased by

distributions of colours in those env ironments’. In the colour contrast section, we

will present a measure of colour contrast which could be used to study if bias due to

v iewing background result from both spatial contrast adaptation and spatial



contrast induction.

Discussion

We hav e noticed that our results are significantly impacted by the duration of

experiments. Such observ ation was already done in prev ious studies. For example,

Wichmann [25] showed that, contrary to contrast, colour play s a major role on

long term v isual memory (e.g. for display duration longer than 500ms). We hav e

also noted that the sequence of tests influences assessment estimations due to

human memory effect. In general, such a question has not been extensiv ely

studied. To what extent the question was: is the v iewer’s current impression (for

test T + 1 ) of the experiment dependent upon prev ious assessment (for test T)? We

do think so. That was the reason why in this study our tests were carried out in a

random order. More generally , we hav e noted that human memory effect biased

the assessment estimation when the background of the image did not v ary in the

time from one test to the following one, and when the assessment estimation

duration was higher than at least 5 s. We hav e also observ ed that v iewers were

quick and less accurate to assess high changes from one test patch to the following

one (between tests T and T + 1 ) but slow and accurate to assess low changes

(between test T and T + 1 ). Considering that differences in v iewer’s reaction times

to background changes may reduce assessment’s accuracy , the assessment time

was therefore limited to a minimum of 5 s.

Four continuous grading scales were used in this study with ten-grade assessment

v alues linearly spaced in order to help the v iewer in his judgement (see Figure 8c).

Ev en if it has been established that there is no direct psy chophy sical

correspondence between a continuous scale and a rating scale, we observ ed a good

correlation when the colour difference between the test patch and the reference

patch is low or moderate. Nev ertheless, when the colour difference is high,

correlation is lower.

A simple linear model has been used in this study to fit data. The next task will be

to define better fitting curv es from non-linear functions, then to compute a fitting

model which parameterizes these fitting functions in function of the ty pe of

background considered.

Sev eral studies hav e demonstrated that colour influences considerably human

v isual attention when seeing natural images [58]. Furthermore, sev eral studies

hav e shown that contextual factors influence globally and locally the saliency of a

region [43]. In order to explore whether the local saliency of a region influences its

colour appearance we hav e introduced in the second part of our study a

computational model of colour contrast.



of the local saliency of a region on the colour appearance of an image from this

computational model (Figure 15 and Figure 16) and to extend the study of

v iewing parameters to image content and to surround. The rationale will be to use

the three v iewing parameters, background, surround and image content, as inputs

to colour appearance models. This means calculating new colour appearance

attributes into measurable objectiv e mathematical entities. As for the first part of

the study presented in this paper, an image analy ser will be used to capture

reference target images under all the v iewing conditions studied. These images

will be analy sed so as to accurately describe v iewing parameters such as black

lev el, luminance range or contrast.

Colour Contrast Measure

As mentioned prev iously , colour considerably influences human v isual attention

when seeing natural images, in particular contextual factors influence globally

and locally the saliency of a region. In order to explore whether the local saliency of

a region influences the colour appearance of regions we introduce in this second

part of our study a computational model of colour contrast.

General workflow of the colour contrast m easure

The general work flow of the proposed computational model of colour contrast

measure is presented in Figure 17 . This measure of colour contrast relies on a set of

parameters organised in a hierarchical structure. The computation is based on

spatial criteria and integrates low-lev el factors calculated on defined regions

relativ ely to their local and global neighbourhoods.

As shown in Figure 18, a local neighbourhood Ni is isotropically defined around a

giv en region of interest Ri. A local neighbourhood Ni consists of a set of regions

(patches) Rj giv en by a coarse ‘segmentation’ of the original image I . Such a

segmentation process is managed by av eraging colour information on a mosaic of

hexagonal patches [15]. All patches hav e the same size and they realise a

pav ement of the original image. The size of patches is determined according to the

expected resolution of the working image i.e. the spatial density of patches (see

Figure 1 0).

The main adv antage of our approach is that it is not driv en by the choice of a

segmentation algorithm and by the setting of associated parameters. There is a

single control parameter deriv ed from the number of patches that the observ er

should see in his fov eal v isual field at a giv en distance of observ ation.



region of interest Ri is described by its dimensions and by its location in the working

image. As prev iously stated, the dimensions of regions of interest are directly

linked to the ‘segmentation’ process. A region of interest corresponds to one of the

hexagonal patches of the mosaic used to compute the working image. The size of

patches is adjusted according to the v isual angle sustained by the fov ea. It

determines the number of patches captured by human ey e when observ ing the

working image at a giv en distance.

Colour contrast is obv iously modulated by chromatic v ariations but also by

changes in luminance. The original RGB image is projected into the AC1 C2 colour

space to be consistent with the three different pathway s of the human v isual

sy stem. Then luminance changes refer to the achromatic component A and

chromatic v ariations refer to the red–green and blue–y ellow antagonist

components C1 and C2.

Let be:

• the colour v alues of pixel of coordinates (i,j).

• the mean of colour v alues of the region of interest Ri with Eqn 1

• the mean of colour v alues of the neighbourhood Ni with Eqn 2

• the v ariance of colour v alues of the neighbourhood Ni with Eqn 3

• the chromatic v ariance computed from and

with Eqn 4

• the colour mean of the original image I with Eqn 5

• the colour v ariance of the original image I with Eqn 6

• the chromatic v ariance of the original image I computed from

and with Eqn 7

Then, we can define the following local and global parameters:

Local luminance contrast between a region of interest Ri and its

neighbourhood Ni as Eqn 8

1 .

Local colour contrast between a region of interest Ri and its neighbourhood

Ni as Eqn 9, with

2.

and expressed

by Eqn 8 where C1 and C2 replace A.

Luminance3. between a region of interest Ri and a

surrounding Ni
±15 which sustained a v isual angle of ±1 5° from the centre of

Ri.  The term is expressed as and

Ni
±15

consists of 6 hexagonal patches at resolution 1 , 36 hexagonal patches at



As prev iously explained, a neighbourhood Ni is associated with each region

of interest Ri. Each neighbourhood is isotropic and consists of a set of 6

hexagonal patches. A local contrast depends on both the local spatial

structure of the scene and the size of the area where the local contrast is

quantified. Then, the measure of the colour contrast has obv iously to

integrate the neighbourhood Ni of a region of interest Ri but also the local

surrounding of Ri. Such a surrounding is isotropic and it is defined by a more

or less important number of hexagonal patches. This number of patches is

related to the expected resolution of the processed image at a giv en distance

of observ ation.

Chrominance4. and between

a region of interest Ri and its surrounding Ni
±15. The terms

and are, respectiv ely ,

expressed as and where Ni
±15

replaces Ni.

Colour5. between a region of interest Ri and its

surrounding Ni
±15. The term is expressed as

, where Ni
±15

replaces Ni.

Global luminance contrast between a region of interest Ri and the ov erall

image I as Eqn 10.

6.

Global chrominance7 . and between a

region of interest Ri and the ov erall image I . The terms

and are, respectiv ely , expressed as

and where I replaces Ni.

Global colour8. between a region of interest Ri and the

ov erall image I . The term is expressed as

where I replaces Ni.

Weight of a region of interest Ri relativ ely to its eccentricity from the centre

of image I as Eqn 11.

where α represents the v iewing angle between the region Ri under study

and the central region R0 of image I .

9.

Resulting contrast of a region of interest Ri in function of the luminance as

Eqn 12 with Eqn 13.

The more

1 0.

tends toward zero the less the contrast in



luminance is high. If then the local contrast between the

region of interest Ri and its local neighbourhood Ni is insignificant with

regard to the contrast between Ri and the surrounding Ni
±15 and in regards to

the global contrast between Ri and the whole image I . Conv ersely , the more

the more the local contrast is noticeable.

Resulting contrast of a region of interest Ri in function of the chrominance1 1 .

. It is expressed as with

and , respectiv ely , replacing and

. The term is giv en by Eqn 14.

As shown by the flow chart of Figure 1 7 , the achromatic information is used

to compute both a global contrast measured between each region of interest

and the ov erall working image and a local contrast measured between each

region of interest and its associated neighbourhood. A local contrast and a

global contrast are calculated in the same way from the chromatic

information.

The final measure of the colour contrast is giv en by Eqn 15.

The colour contrast measure integrates chromatic and achromatic

information weighted by the location of regions of interest. Such an

approach is consistent with the non uniform distribution of photoreceptors

across the human retina.

Results of the colour contrast m easure

Figure 19 presents intermediate results used to construct the final measure of

colour contrast. The original image contains high spatial frequencies and has a

global colour mean different to zero. The image has been ‘segmented’ at resolution

2 (Figure 1 9b). It means that each region of interest Ri (each hexagonal patch)

sustains a v isual angle of 5° at the selected distance of observ ation. In the

‘segmented’ image, the colour of 3 patches has been changed (Figure 1 9c). The

difference from the original colour and the modified one is great for the first patch

(in the brown area at the bottom of the segmented image), moderate for the second

patch and low for the third patch.

Figure 1 9d presents the measure of the local luminance contrast normalised by

regional and global luminance contrasts. This normalised local luminance has

been calculated with Eqn 1 3 for each region of interest Ri of the image of Figure

1 9c. The most salient region in terms of luminance is the white patch located in a

more or less brown uniform area.

Figure 1 9e presents the measure of local colour contrast normalised by regional



and global colour contrasts. This normalised local colour contrast has been

calculated with Eqn 1 4 for each region of interest Ri of the image shown in Figure

1 9c. The white patch salient in terms of luminance contrast is also identified as

salient in terms of colour contrast. Ev en if there are a lot of different colours in the

‘segmented’ image, only two patches hav e a significant colour contrast relativ e to

their env ironment.

Chromatic and achromatic information are merged according to their relativ e

strength to prov ide the final measure of colour contrast. Only the regions of

interest salient for both local normalised luminance contrast and local normalised

colour contrast are promoted. As shown by Figure 1 9g, the white patch hav ing a

high local contrast in luminance and a high local contrast in colour is associated

with the highest v alue of the final measure of colour contrast. The measure of

colour contrast introduced in this paper integrates a modulation based on an

eccentricity function as the one presented in Figure 1 9f. Such an eccentricity

function simulates the non uniform acuity across the whole v isual field of a human

observ er.

Figure 20 shows an example of the outcome of measuring colour contrast as

proposed in this paper. Figures 20b and 20c show respectiv ely the result of the

measure of colour contrast without and with the eccentricity function. Then the

complete result presented in Figure 20c locates the highest colour contrasts as they

should be perceiv ed by an observ er hav ing his gaze directed to the centre of the

image with a distance of observ ation such that a set of 7 patches would be projected

on his fov ea.

Another example is shown in Figure 21. Likewise Figures 21 b and 21 c show the

results of the measure of colour contrast without and with the eccentricity

function. Then the complete result presented in Figure 21 c locates the highest

colour contrasts as they should be perceiv ed by an observ er hav ing his gaze

directed to the centre of the image with a distance of observ ation such that a set of

7 patches would be projected on his fov ea.

In the examples shown in Figure 22 and Figure 23, the parts (c) to (e) hav e been

observ ed by fiv e v olunteers. Their fixation points hav e been recorded by an ey e

tracking sy stem during a free v iewing task. The first four fixation points are

reported on images: the red circles correspond to the first fixation, the green to the

second, the blue to the third and the y ellow to the fourth. Ey e tracking results

show that the first fixation points are located in the central area of the observ ed

image when there is no region of interest with a high colour contrast. This central

area corresponds to a v isual field of around 1 5°. Such an area has the size of the

surrounding used in the proposed model. We can see that the more a patch is



important. On the other hand, the more a patch is distant of the gamut of the

ov erall image, the more it is salient.

Discussion

In this third part of the paper we hav e proposed a computational method to

measure colour contrast. In order to explore whether the local saliency of a region

influences its colour appearance the proposed approach combines local and global

information and takes into account interactions between chromatic and

achromatic signals. The spatial features of the scene as well as the location of

v ariations hav e been integrated in the ev aluation of the colour contrast. The

model has been dev eloped to be consistent with human perception. To check the

correlation between results giv en by the measure of colour contrast and observ er

v aluations, ey e tracking experiments were conducted with fiv e v olunteers. The

recorded fixation points hav e been compared with the location of the highest

v alues of colour contrast. The first experimental results are v ery encouraging and

clearly suggest that the measure of colour contrast we hav e introduced in this

paper is correlated with human perception.

According the authors’ opinion the future of v isual attention models will follow the

dev elopment of perceptual multiscale saliency map based on a competitiv e process

between all bottom-up cues (orientation, intensity and colour). Likewise, the

future of v isual attention models will pass by the dev elopment of new saliency

models which better take into account colour perception through neural

mechanisms. For example, ROI detection based on v isual attention mechanisms is

currently an activ e research area in the image processing community .

General Discussion and Perspectives

The examination of numerous v isual assessment results done showed that the

influence of the background on colour appearance is more noticeable:

for complex images than for images with a simple background (see Tables 1

and 2),

•

for complex images with high frequencies than for colour images with low

frequencies or simple images,

•

for chromatic images with a large gamut than for less coloured images with

a low gamut.

•

The v isual assessments reported in Tables 1 and 2 were carried out using the

magnitude estimation technique. Other effects on colour appearance due to patch

sizes, distance between patches, lightness, chroma and hue are less noticeable than



the three prev ious factors.

From the results and trends observ ed in this study , simple rules could be proposed

to predict the colour appearance of complex scenes which can serv e as a guide for

designers.

For a more precise prediction of the colour appearance of complex images we should

conduct further more specific experimental campaigns, limited to a single

parametric factor study such as local saliency in the image, in order to be able to

model the relativ e influence of each parametric factor independently of any other

parametric factor. In order to explore whether the local saliency of a region

influences its colour appearance we introduced a new protocol of experiments (see

Figures 1 5 and 1 6) and dev eloped a computational model of colour contrast. The

next step of our study will consist of v alidating the proposed model and the

parametric factors used from experiments carried out. The objectiv e will be to use

the three v iewing parameters, background, surround and image content, as inputs

to colour appearance models. This means calculating new colour appearance

attributes into measurable objectiv e mathematical entities.

Conclusions

In this paper, we hav e inv estigated whether the colour perception is affected by the

distribution and the spatial organisation of colours in a complex image. We hav e

analy sed the influence of scene content and of background ty pes on the colour

appearance judgement. It was concluded that, for a more precise prediction of the

colour appearance of complex images one should conduct further experiments

campaigns more targeted, limited to a single parametric factor study such as local

saliency in the image, in order to be able to model the relativ e influence of each

parametric factor independently of any other parametric factor.

The influence of the local colour saliency on the colour appearance was also

analy sed. The proposed model integrates in a single model the influence of av erage

colour perception and the interactions between local and global spatial structures

according to the v isual eccentricity . The measure of colour contrast relies on a set

of parameters organised in a hierarchical structure. The computation is based on

spatial criteria and integrates low-lev el factors calculated on defined regions

relativ ely to their local and global neighbourhoods.
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